منابع مشابه
Cartan-eilenberg Cohomology and Triples
In their classic book, Cartan and Eilenberg described a more-or-less general scheme for defining homology and cohomology theories for a number of different kinds of algebraic structure, using a general theory of augmented algebras. Later, in his doctoral dissertation, Beck showed how to use the theory of triples to derive a very different and completely general scheme for doing the same thing. ...
متن کاملCartan Invariants
It is safe to say that the theory of modular representations of finite groups is not a part of the average mathematician's toolkit. Matrix representations of finite groups over the complex field, and the resulting characters (traces of matrices), occur rather widely in both pure and applied mathematics. But replacing complex numbers by elements of a finite or other field of prime characteristic...
متن کاملCartan Pairs *
A new notion of Cartan pairs as a substitute of notion of vector fields in the noncommutative geometry is proposed. The correspondence between Cartan pairs and differential calculi is established.
متن کاملSpectral triples of weighted groups
We study spectral triples on (weighted) groups and consider functors between the categories of weighted groups and spectral triples. We study the properties of weights and the corresponding functor for spectral triples coming from discrete weighted groups.
متن کاملPythagorean Triples
The name comes from elementary geometry: if a right triangle has leg lengths x and y and hypotenuse length z, then x + y = z. Of course here x, y, z are positive real numbers. For most integer values of x and y, the integer x + y will not be a perfect square, so the positive real number √ x2 + y2 will be irrational: e.g. x = y = 1 =⇒ z = √ 2. However, a few integer solutions to x + y = z are fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2019
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnz340